Spherical harmonics

R3 上のラプラシアン Δ = (∂2/∂x2, ∂2/∂y2, ∂2/∂z2) は2階微分作用素ですが, これを R3 の球面極座標
x = rsinθcosφ, y = rsinθsinφ, z = rcosθ
に変換し, r = 1 に制限したものは球面 S2 上のラプラシアンと呼びます.
これを ΔS2 と書くことにします.
※ΔS2 を導くために直接, 球面極座標に変換して計算すると大変なので, 先ず
x = ρcosφ, y = ρsinφ, z = z
に変換してから, もう一度
ρ = rsinθ, z = rcosθ, φ = φ
のように2次元極座標変換を行えば, 計算が割と楽になります.

R3 上の複素係数 n 次同次多項式の空間 Vn は明らかに1つの複素ベクトル空間で,
ラプラシアン Δ の Vn への制限
Δ|Vn : Vn → Vn-2
の kernel を Un とおきます.

そして, Un の元 を n 次調和多項式といい,
さらに S2 に制限したものは n 次球面調和多項式と呼ばれます.

このように呼ぶと, 球面調和多項式 F(1,θ,φ) はあたかも ΔS2F = 0 となる多項式のように思えます.
しかし, 実際は ΔS2F = -n(n+1)F となることが計算で確かめられるので,
F(1,θ,φ) は ΔS2 の固有多項式であり, その固有値は -n(n+1) であることが分かります.

球面調和多項式は英語の spherical harmonics の訳ですが, このような性質を持っているため誤解を招く恐れがあります.
適切な訳語であるとは余り思えないので, 英語のまま ”spherical harmonics” と言えば良いかもしれません.

Jordan 曲線定理

次の定理を Jordan (ジョルダン) 曲線定理と呼びます.

c を平面上のループ (Jordan 曲線, 単純閉曲線とも言う) とすれば,
その補集合 R2-c は有界な部分 (内部) と有界でない部分 (外部) から成り, 2つの領域の境界は c です.
c の内部と外部からそれぞれ1点ずつをとれば, それらを結ぶ弧は必ず c と交わる.

この定理は一見明らかのように思えますが,
一般のループに対して証明するのは難しく, 位相幾何学の知識を必要とします.

いま, R2 について述べましたが, R3 の場合は成り立つでしょうか?
答えは, 成り立ちません.
R3 内のループでは内部も外部もないことは明らかでしょう.

また曲面上のループを考えると, 球面 S2 上では定理が成り立ちます.
ただ, 単連結の記事で書いたように内部・外部の区別は意味がありません.

トーラス上には定理が成立しないようなループがあります.

photo credit: Spirals and loops via photopin (license)

単連結

2次元球面 S2 (我々が普段球面と思っているもの) 上にへばりついて生活している生物を想像しましょう.
つまり, その生物にとって, 球面が宇宙そのものです.

その生物を A と名付けましょう.

いま, A を囲む球面上の任意のループ (自分自身と交叉しない閉曲線) を考え, ループ上の1点 P を固定します.
A はループの内部にいますが, 点 P を固定しておいてループを連続的に変形させてどんどん広げていけば,
たちまち A はループの外部へ出てしまいます.
このことから, 球面上ではループの内部にいる A はループの外部にいるとも思えます.
逆も同様です.

ここで, ループの内部・外部という言葉を使いましたが,
それではループを赤道とすれば A は内部と外部のどちらにいるのか?
という問いが生じるので, そもそも球面上では内部・外部の区別は意味がなく,
ループは球面をただ2つの領域に分けると理解してください.

次に, 点 P を固定しておいてループを連続的に変形していくと, 点 P に縮めることが出来ます.
このとき, ループと点 P は互いにホモトープまたはホモトピックであるといいます.

一般にこのような性質が成り立つ領域は単連結であるといいます.

ちなみに, トーラスは単連結ではありません.

photo credit: Loops, I did it again. via photopin (license)

RPG の世界

何気なく RPG (ロールプレイングゲーム) で遊んでいれば特に気付きませんが,
指摘されると「なるほど」と思ってしまうネタです.

RPG の四角いワールドマップを思い浮かべてみましょう.
まず, マップの上端と下端は同一視することが出来るので,
地図を丸めて上端と下端を貼り合わせると円筒を作ることが出来ます.
さらに, マップの左端と右端も同一視することが出来るので, それら両端を貼り合わせます.
すると, ドーナツ状曲面が出来上がります.

数学ではこの曲面をトーラスと呼びます.
つまり, RPG の世界は球ではなくトーラス (torus) ということになります.

ここからは少し専門的な話です.
トーラスが Lie 群の構造を持つことを述べます.

まず, 円周 S1 は Lie 群の最も簡単な例の1つで,
1次元ユニタリ群 U(1) と同型であることは直ちに分かります.
次に, 1次元トーラス群 TR/2πZ は加法群 R において,
2π の整数倍だけ異なる2つの元を同一視して生ずる群です.
イメージとしては, 1周すると 2π となる円柱に数直線をぐるぐる重ねて巻きつける感じです.
T は U(1) と同型であり,従って位相的には S1 と同相なので,
結局 T は S1 のことです.

さて, ドーナツは2つの S1 で表すことが出来るので T2 = S1 × S1 と書けて,
これを2次元トーラスといいます. 略して2-トーラスともいいます.
S1 は1次元 Lie 群だから, その直積もまた Lie 群となり,
2-トーラスは2次元 Lie 群ということが分かります.

photo credit: Villarceau Variations II via photopin (license)

0.9999… = ?

無限に関するトピックを1つ.

0.9999…
と無限に小数点以下の 9 が続いていくと何になるでしょうか?

答えは 0.9999… = 1 になります.
この証明は無限等比級数の和を使うと簡単に示せます.

初項を a=9/10, 項比を r=1/10, 第n+1項までの和を Sn とすれば,

  Sn =   a + ra + r2a + r3a + … + rna,
rSn = ra + r2a + r3a + r4a + … + rn+1a

と表せるので, 2つの等式の各辺を差し引きすれば,
(1-r)Sn = a – rn+1a.

ここで, 0 < r < 1 であるから, n → ∞ とすれば, Sn → ∞ = a / (1-r).

よって, (9/10) / (1-1/10) = 1 となります.

photo credit: We were infinite. via photopin (license)