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1. Let G be a finite group. Then G is abelian if and only if all irreducible unitary representations of
G are one-dimensional.

Let G be a finite group and (m, V) be a representation of G. Since 7(g)n(g") = w(¢')w(g) for all
g, ¢ € G, m(g9) = A\g1(Ag € C) by Schur’s Lemma. Therefore, being as all subspaces of V are m(G)-
invariant, the representation space V' must be one-dimensional in order for 7 to be irreducible.

Conversely, let G be a finite group and all 7; € G (1 < i < d) are one-dimensional. Then G is an

abelian group. Indeed: by Burnside theorem, we have
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where d is number of conjugacy classes and each n; (1 < i < d) is dimension of the irreducible unitary
representation of ;. Since all n; = 1, d = |G| and every conjugacy class consists of one element. Take

I = gz for all y € G. Hence G is abelian.

x € G; then yxy~
2. Let G be a finite abelian group and H a subgroup of G. Show that every unitary character of H can
be extended to a unitary character of G.
Let G be a character group of G and H be a subgroup of G. H* := {x e G ; x(h)=1(Yhe H)}. It
is only necessary to show that the natural map f : G > X Xxlg € H is surjective. Since Ker f = H*

and H* ~ (G/H)", then
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Hence f is surjective.

3. Prove the same as in exercise 1 for a compact group G.

If G is a compact abelian group, what all irreducible unitary representation of G are one-dimensional
is clear by Schur’s lemma.

Conversely, let G be a compact group and all 7 € G are one-dimensional. Then G is a abelian group.

Indeed: take f € L?(G), by Peter-Weyl theorem, we have
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where (f, x) = SG x(z)dz. Take f, g€ L*(Q@), then f * g € L*(G) and since

(f g, x)—f (f * 9)(@)x@)dz

J J (zy™) )x (@) dydz
J J f(z x(zy)dydz

J J f(z x(2)x(y)dydz (.- 7 is one-dimensional.)
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G
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for all x € G, we have

frg= D (F*g.0)x= Z(f, X)(g, X)x-
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So fxg = g= f, that is {, f(yz=")g(x)de = §,g(yz™")f(x)dz. Since §,g(yz™")f(x)dx =
S 9(x)f(x~ y)dx, then f(yz) = f(ay) for all z, y € G. So yx = xy for all 2, y € G. Hence G is abelian.

4. Determine (up to equivalence) the irreducible unitary representations of the groups SO(2) and O(2).

6. Let @ be the unitary representation of SL(2,R) on V = L*(R?) given by ®(g9)f(z) = f(g  x).

(a) Show that for each r > 0 that the operator L, : V. — V given by L, f(z) = f(rxz) commutes with
®(g) for all g € SL(2,R).

Let g = [Z Z] € SL(2, R), then g~! = [_dc _ab}
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Hence we have L, (®(g)f) = ®(g)(L,f) for all g e SL(2, R).

(b) Conclude that ® is reducible.

Assume @ is irreducible. Since L, commutes with ®(g), L, is a scalar operator by Schur’s Lemma.
But now L, is not a scalar operator. Hence this is contradiction.

7. Show that the pair (SU(2),SO(2)) is a compact Gelfand pair.

First, show that SU(2) is decomposed as

SU(2) = SO(2)TSO(2) (%)



by using the maximal torus T := {t(¢) = diag(e™?/2, e7#/2); p e R} of SU(2). Set g = l; ﬁ] €
a

cos(7/2) —sin(7/2)

€ SO(2). Since a? +a3+b2+b3 =1,
sin(7/2)  cos(7/2)

SU(Q)’ a = aj+iao, ﬂ = by +1by and k‘(T) = l

take ¢ € R such that

\/at + b2 :cosg, A/ a3 + b3 —sm%

And so take 71, 7 € R such that
ai = cos hd cos 11, by = cos hd sinTy, as = sin%cosm, by = sin g sin 7.
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Hence we have equation (#).
Next, consider the involution 6 : SU(2) — SU(2) defined by

0(9) =9 (g€ SU(2)).

Clearly 0 leaves SO(2) fixed and 0(t()) = t(@) = t(p)~* for all t(¢) € T. Therefore, because SU(2) =
SO(2)TSO(2), we have

0(g) € SO(2)g~S0(2)

for all g € SU(2). So we have by Proposition 7.3: the pair (SU(2), SO(2)) is a Gelfand pair.
8. Show that the pairs (U(n), U(1) x Uln — 1)) are compact Gelfand pairs for alln =1, 2, 3...



